57 research outputs found

    What a pity, Pepper! How warmth in robot's language impacts reactions to errors during a collaborative task

    Get PDF
    Hoffmann L, Derksen M, Kopp S. What a pity, Pepper! How warmth in robot's language impacts reactions to errors during a collaborative task. In: HRI '20 Companion. ACM; 2020

    Information, social interactions and health seeking behavior

    Get PDF
    This thesis examines the underlying cause of social stigma towards people living with HIV, and the extent to which it discourages HIV testing and treatment. We use a discrete choice model to describe a person’s decision to seek treatment for HIV (antiretroviral therapy or ART), and estimate the social cost of seeking treatment using administrative health records from southern Malawi. We show that seeking ART at a clinic where many other community members are present carries a significant cost, even after taking into account clinic quality and location. We investigate the theoretical effects of policy interventions designed to reduce stigma and other barriers to care, and demonstrate important complementarities between such policies. We next evaluate a cluster-randomized information experiment in Zomba, Malawi designed to correct a common misconception: most do not know that ART drugs have a public benefit, that is, the medication prevents HIV transmission between sexual partners. We microfound HIV stigma as sexual discrimination between sexual partners, and model the decision to seek an HIV test (and then, if required, medical treatment) as a signal of infection. We show, theoretically and empirically, that the randomized information intervention reduces this type of stigma and significantly increases the rate of HIV testing. The results demonstrate that social stigma is an important barrier to HIV testing and treatment, that stigma can be due to rational behavior by a misinformed public, and that providing new information can be an effective way to mitigate its effects

    Repetitive desiccation events weaken a salt marsh mutualism

    Get PDF
    1. Salt marshes suffered large‐scale degradation in recent decades. Extreme events such as hot and dry spells contributed significantly to this, and are predicted to increase not only in intensity, but also in frequency under future climate scenarios. Such repetitive extreme events may generate cumulative effects on ecosystem resilience. It is therefore important to elucidate how marsh vegetation responds to repetitive stress, and whether changes in key species interactions can modulate vegetation resilience.2. In this study, we investigated how moderate but repetitive desiccation events, caused by the combined effects of drought and high temperatures, affect cordgrass (<i>Spartina alterniflora</i>), the dominant habitat‐forming grass in southeastern US salt marshes. In a 4‐month field experiment, we simulated four consecutive desiccation events by periodically excluding tidal flooding and rainfall, while raising temperature. We crossed this desiccation treatment with the presence/absence of ribbed mussels (<i>Geukensia demissa</i>) – a mutualist of cordgrass known to enhance its desiccation resilience – and with grazing pressure by the marsh periwinkle (<i>Littoraria irrorate</i>) that is known to suppress cordgrass’ desiccation resilience. 3. We found that each subsequent desiccation event deteriorated sediment porewater conditions, resulting in high salinity (53 ppt), low pH‐levels (3.7) and increased porewater Al and Fe concentrations (≈800 μmol/L and ≈1,500 μmol/L) upon rewetting. No effects on porewater chemistry were found as a result of snail grazing, while ribbed mussels strongly mitigated desiccation effects almost to control levels and increased cordgrass biomass by approximately 128%. Importantly, although cordgrass generally appeared healthy above‐ground at the end of the experiment, we found clear negative responses of the repetitive desiccation treatment on cordgrass below‐ground biomass, on proline (osmolyte) levels in shoots and on the number of tillers (−40%), regardless of mussel and/or snail presence.4. <i>Synthesis</i>. Even though the mutualism with mussels strongly mitigated chemical effects in the sediment porewater throughout the experiment, mussels could not buffer the adverse ecophysiological effects observed in cordgrass tissue. Our results therefore suggest that although mussels may alleviate desiccation stress, the predicted increased frequency and intensity of hot dry spells may eventually affect saltmarsh resilience by stressing the mutualism beyond its buffering capacity

    Variability and change in the Canadian cryosphere

    Get PDF
    Abstract During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40 years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure

    Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Get PDF
    BACKGROUND: Glycogen Synthase Kinase-3 (GSK-3) \u3b1 and \u3b2 are two serine-threonine kinases controlling insulin, Wnt/\u3b2-catenin, NF-\u3baB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3\u3b1 and GSK-3\u3b2 function in multiple myeloma (MM). METHODS: GSK-3 \u3b1 and \u3b2 expression and cellular localization were investigated by Western blot (WB) and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 \u3b1 and \u3b2 isoforms. Survival signaling pathways were studied with WB analysis. RESULTS: GSK-3\u3b1 and GSK-3\u3b2 were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3\u3b2 knock down decreased MM cell viability, while GSK-3\u3b1 knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of \u3b2-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3\u3b1 knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. CONCLUSIONS: These data suggest that in MM cells GSK-3\u3b1 and \u3b2 i) play distinct roles in cell survival and ii) modulate the sensitivity to proteasome inhibitors

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis.

    Get PDF
    The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore